22 January 2012
Last updated at 13:01 ET
Gene switch 'key to heart health'
Scientists may be closer to understanding how genes can influence serious heart conditions, says a Nature Genetics report.
The failure to turn off a specific gene at the right time in an embryo's development could mean illness later in life.
Mice in which the gene was left active were born apparently healthy, but suffered heart muscle problems later.
A heart charity said it might one day be possible to fix the genetic switch.
The science of "epigenetics", which places importance not
just on the genes you carry, but also how well they are working, is a
relatively new area.
There is increasing evidence that suggests that while you
carry the same set of genes for life, environmental factors, such as
diet or even your mother's health while you are in the womb, could
affect their activity, and your chances of certain illnesses later in
life.
The scientists from the Gladstone Institute in San Francisco
focused on two genes, and their role in cardiomyopathy, a enlarging and
weakening of the heart muscle which is a feature in life-threatening
heart defects in children and adults.
Developing signs
One of the genes, called Six1, appears to play an important
role in embryonic heart development, while the other, Ezh2, seems to
have the job of switching off genes, including Six1, when they are no
longer needed.
The researchers tested the precise relationship by stopping
Ezh2 from working in the embryo and foetus at various points during
pregnancy, thereby allowing Six1 to go on working for longer than usual.
Professor Peter Weissberg BHFWhat this shows is that a really crucial step in normal heart development is the switching off of genes”
They found that while the mice
were born apparently normal and healthy, they then started to develop
the signs of cardiomyopathy.
This suggested that although leaving Six1 switched on in
humans might produce a seemingly healthy baby, it could be storing up
heart problems for later in life.
Analysis of the results revealed that, in a healthy
pregnancy, Six1 should only normally be switched on briefly during heart
development.
'Crucial step'
Dr Paul Delgado-Olguin, one of the team, said: "When Six1
remains active for too long in Ezh2-deficient mice, it boosts the
activity of other genes that shouldn't be activated in heart muscle
cells - such as genes that make skeletal muscle.
"The enlargement and thickening of the mice's hearts over time eventually led to heart failure."
They are hopeful that further work will reveal more about the roots of congenital heart problems in early life.
Professor Peter Weissberg, from the British Heart Foundation, said the research was "important".
"What this shows is that a really crucial step in normal heart development is the switching off of genes.
"If this doesn't happen, and they continue to be expressed, this can cause trouble later in life."
He said that there was the possibility that faulty gene
expression could be corrected, although it would be some years before
such techniques could be used in humans.
The possible reasons for the faulty "switch" - whether
dietary, medical or something else - could also be investigated, he
added.